第九回 大广田

,令径自乘,以十一乘之,十四而一,即圆幂也。〕

又术曰:周自相乘,十二而一。

〔六觚之周,其于圆径,三与一也。故六觚之周自相乘为幂,若圆径自乘者

九方。九方凡为十二觚者十有二,故曰十二而一,即十二觚之幂也。今此令周自

乘,非但若为圆径自乘者九方而已。然则十二而一,所得又非十二觚之幂也。若

欲以为圆幂,失之于多矣。以六觚之周,十二而一可也。于徽新术,直令圆周自

乘,又以二十五乘之,三百一十四而一,得圆幂。其率:二十五者,周幂也;三

百一十四者,周自乘之幂也。置周数六尺二寸八分,令自乘,得幂三十九万四千

三百八十四分。又置圆幂三万一千四百分。皆以一千二百五十六约之,得此率。

淳风等按:方面自乘即得其积。圆周求其幂,假率乃通。但此术所求用三、

一为率。圆田正法,半周及半径以相乘。今乃用全周自乘,故须以十二为母。何

者?据全周而求半周,则须以二为法。就全周而求半径,复假六以除之。是二、

六相乘,除周自乘之数。依密率,以七乘之,八十八而一。〕

今有宛田,下周三十步,径十六步。问为田几何?答曰:一百二十步。

又有宛田,下周九十九步,径五十一步。问为田几何?答曰:五亩六十二步

四分步之一。

术曰:以径乘周,四而一。

〔此术不验,故推方锥以见其形。假令方锥下方六尺,高四尺。四尺为股,

下方之半三尺为句。正面邪为弦,弦五尺也。令句弦相乘,四因之,得六十尺,

即方锥四面见者之幂。若令其中容圆锥,圆锥见幂与方锥见幂,其率犹方幂之与

圆幂也。按:方锥下六尺,则方周二十四尺。以五尺乘而半之,则亦锥之见幂。

故求圆锥之数,折径以乘下周之半,即圆锥之幂也。今宛田上径圆穹,而与圆锥

同术,则幂失之于少矣。然其术难用,故略举大较,施之大广田也。求圆锥之幂,

犹求圆田之幂也。今用两全相乘,故以四为法,除之,亦如圆田矣。开立圆术说

圆方诸率甚备,可以验此。〕

今有弧田,弦二十步,矢十五步。问为田几何?答曰:一亩九十七步半。

又有弧田,弦七十八步二分步之一,矢十三步九分步之七。问为田几何?答

曰:二亩一百五十五步八十一分步之五十六。

术曰:以弦乘矢,矢又自乘,并之,二而一。

〔方中之圆,圆里十二觚之幂,合外方之幂四分之三也。中方合外方之半,

则朱青合外方四分之一也。弧田,半圆之幂也。故依

(本章未完,请翻页)

4-5-6/7